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SUMMARY

Sleep exerts many effects on mammalian forebrain
networks, including homeostatic effects on both syn-
aptic strengths and firing rates. We used large-scale
recordings to examine the activity of neurons in the
frontal cortex of rats and first observed that the dis-
tribution of pyramidal cell firing rates was wide and
strongly skewed toward high firing rates. Moreover,
neurons from different parts of that distribution
were differentiallymodulated by sleep substates. Pe-
riods of nonREM sleep reduced the activity of high
firing rate neurons and tended to upregulate firing
of slow-firing neurons. By contrast, the effect of
REM was to reduce firing rates across the entire
rate spectrum. Microarousals, interspersed within
nonREM epochs, increased firing rates of slow-firing
neurons. The net result of sleep was to homogenize
the firing rate distribution. These findings are at vari-
ance with current homeostatic models and provide a
novel view of sleep in adjusting network excitability.
INTRODUCTION

Sleep exerts profound effects on brain and body, including regu-

lation of the endocrine (Rasch and Born, 2013) and immune

systems (Besedovsky et al., 2012), extracellular clearance of

potentially toxic substances (Xie et al., 2013), recovery frombrain

damage (Siccoli et al., 2008), construction of circuits during

development (Frank et al., 2001), and consolidation of learned in-

formation (Axmacher et al., 2006; Buzsáki, 2015; Inostroza and

Born, 2013; Rasch and Born, 2013; Sejnowski and Destexhe,

2000).

Mounting evidence is available to support a homeostatic role

for sleep, particularly for the importance of non-rapid eye move-

ment (nonREM) sleep (Borbély, 1982; Feinberg, 1974; Tononi

and Cirelli, 2003, 2014). An influential model, the synaptic ho-

meostasis hypothesis (SHY), suggests that a major role for sleep

is to facilitate recuperation of neuronal energy and synaptic re-

sources that have been depleted after prolonged waking (Tononi

and Cirelli, 2003, 2014). A prediction of SHY is that the most
active cells and synapses during waking continue to be active

during sleep, whereas weak synapses and slow-firing neurons

are ‘‘down-selected,’’ that is, eliminated from network activity

(Tononi and Cirelli, 2003; Vyazovskiy and Harris, 2013). Another

homeostatic scaling model assumes a uniform synaptic and rate

adjustment by multiplying or dividing each synaptic strength and

rate by a uniform factor (Turrigiano and Nelson, 2004; Turrigiano

et al., 1998). However, these key predictions of the SHY and syn-

aptic homeostatic scaling models have not been tested during

natural sleep.

In support of the synapse-oriented predictions of SHY, firing

rates of neocortical and hippocampal principal neurons have

been found to generally increase during waking and decrease

over sleep in rats (Grosmark et al., 2012; Miyawaki and Diba,

2016; Mizuseki and Buzsáki, 2013; Vyazovskiy et al., 2009),

and the amplitude of evoked responses has been found to

vary as a function of sleep-wake cycle (Vyazovskiy et al.,

2007). However, even neurons of similar nominal classification

vary greatly and may be regulated differentially. Pyramidal neu-

rons show a range of synaptic weights and firing rates that

vary over several orders of magnitude (Buzsáki and Mizuseki,

2014). The distribution of these variables over the population is

not just broad but also highly skewed, and approximates a log-

normal distribution. These observations suggest that the contri-

butions of neurons at high and low ends of the firing rate spec-

trum are systematically organized and differentiated (Lim et al.,

2015; Mizuseki and Buzsáki, 2013). Therefore, whether sleep af-

fects neurons from different ends of this distribution uniformly re-

mains an open question with important functional implications.

Furthermore, it remains to be understood how the evolution-

arily conserved nonREM and REM states differentially contribute

to homeostasis (Gervasoni et al., 2004; McCarley, 2007). Recent

work has shown that REM can decrease firing rates in the hippo-

campus (Grosmark et al., 2012), which is of particular interest

when combined with findings that REM and nonREM sleep

may contribute to different types of memory (Grosmark and Buz-

sáki, 2016; Rasch and Born, 2013) and that alterations of REM

sleep can affect cognitive and affective disorders (Gierz et al.,

1987; Walker, 2010). Furthermore, there is evidence from hu-

mans that relative abundance of REM and nonREM plays a

role in learning (Stickgold et al., 2000), but whether these sub-

states of sleep play distinct roles in homeostasis is not known.

In this study, we sought to understand the homeostatic regu-

lation of cortical neurons from across the spectrum of firing rates
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and how sleep substates differentially contribute to that process.

First, we find that fast-firing pyramidal neurons decrease their

firing over sleep, whereas slow-firing neurons increase their

rates, resulting in a narrower population firing rate distribution af-

ter sleep. Second, each sleep substatemakes a unique contribu-

tion to this overall renormalization process. Our findings reveal a

novel form of homeostasis in the brain: regulation of the variance

of the system as a focal process in maintaining network balance.

RESULTS

To examine how different aspects of sleep affect firing patterns

of neurons, we automatically classified brain states, categorized

neurons based on their activity during waking (WAKE), and

tracked them individually during various stages of sleep. We

then assessed (1) differences in average neuronal firing metrics

in sleep states, (2) progressive spiking and local field potential

(LFP) changes over the course of those sleep states, and (3)

how within-state firing rate changes persisted into subsequent

states.

Identification of Brain States
We recorded across different brain states from 11 rats implanted

with one or two 64-site silicon probes in frontal cortical areas,

including the medial prefrontal cortex, orbitofrontal cortex, ante-

rior cingulate cortex, and secondary motor cortex (Figure S1A,

available online). Recordings from 27 sessions (294 ± 137 min)

during the light cycle were segregated into WAKE, nonREM,

REM episodes, and microarousals (MAs; Figure 1; Table S1).

Brain state segregation was performed by a heuristic automated

approach and verified by independent visual classification (Fig-

ures 1A–1D and S1C). First, LFPs were converted into spectro-

grams and principal component analysis was performed on

each spectrogram. In all recordings, the first principal compo-

nent (PC1) was found to represent power in the low-frequency

ranges, with weights of frequencies <25 Hz opposite in sign to

those of frequencies in the gamma range. Since the magnitude

of PC1 showed a bimodal distribution (Figure 1C), a threshold

was set at the trough between the two peaks of the distribution,

which allowed us to classify each second as either nonREM (high

PC1 power) or ‘‘other’’ state (low PC1power). The next step clas-

sified the ‘‘other’’ epochs using a narrow band theta power ratio

(5–10 Hz/2–16 Hz) and electromyogram (EMG) measures (Fig-

ures 1C and S1C), also using cutoffs at the minima of bimodal

distributions on a per recording session basis. Before proceed-

ing, epochs with high theta power and low EMG activity were

designated as REM.

The remaining ‘‘arousal’’ epochs were divided into two further

groups. Prolonged epochs, which often resulted in overt move-

ment (mean epoch movement >5 SD of nonREM mean move-

ment), high EMG activity, and high theta power, were called

WAKE. Shorter epochs (<40 s; Figure S1D), characterized by

low theta power but elevated EMG compared to REM or non-

REM (Figures 1A and 1B), were typically embedded between

nonREM epochs. Our 40 s cutoff was based on the statistical

observation that this threshold yielded MA epochs without

consistent movement (Figure S1D). Previous work has referred

to such patterns as ‘‘low-amplitude sleep’’ (Bergmann et al.,
840 Neuron 90, 839–852, May 18, 2016
1987), ‘‘low-amplitude irregular activity’’ (Pickenhain and Kling-

berg, 1967), or MAs (Halász et al., 1979; Schieber et al., 1971).

We refer to them here as MAs and restricted our classification

of these states to only those which occur between nonREM pe-

riods. There were a total of 790MAs in our dataset (median dura-

tion = 15.9 ± 3.3 s; frequency = 0.32 ± 0.12 per minute; 9.1% ±

3.5% of time in SLEEP [a time epoch defined in detail below]).

Over nonREM episodes, the fraction of time occupied by MAs

decreased (correlation versus normalized nonREM episode

time was as follows: R = �0.85, p < 10�10), with no statistical

change over the course of SLEEP.

Uninterrupted nonREM epochs are referred to here as non-

REM ‘‘packets,’’ whereas a stream of nonREM packets and

MAs without REM are called ‘‘nonREM episodes’’ (Figure 1A;

definitions in Table S1). We found that the duration of packets

was distributed over two orders of magnitude, with a median

of 111 s. Alternating nonREM and REM episodes, lasting a

minimum of 20 min and terminated by prolonged (>120 s)

WAKE are termed extended SLEEP session (Figure 1A). Finally,

we designated analyzable WAKE-SLEEP cycles using cutoffs

of aR7 min WAKE period followed by aR20 min SLEEP period.

The wake cutoff of 7 min was chosen because it met the intuitive

criterion of yielding WAKE epochs highly correlated with

ambulation.

In addition to these longer timescale states, we detected

�0.1–4 s long UP and DOWN states (Wilson and Groves,

1981), which respectively represent two poles of a bimodal but

irregular pattern of population firing during nonREM sleep (Ster-

iade, 2006). DOWN states were characterized by lack of

neuronal spiking activity, prominent delta waves, and reduced

gamma-band power. UP states were detected as events with

spiking activity following clear DOWN states (details of detection

algorithm in Supplemental Information). Within UP states, we

were able to characterize the evolution of LFP (Figure 1E, upper

part), as well as spiking metrics, including rates of spiking (Fig-

ure 1E, lower part) of putative pyramidal or excitatory (pE) and

putative inhibitory (pI) units (unit classification in Figure S2A).

Assessment of Firing Patterns in Different Brain States
Neuronal spiking was recorded from deep cortical layers (Fig-

ure S1A), identified by the positive polarity of DOWN states in

the LFP (Buzsáki et al., 1988; Calvet et al., 1973). Criteria for clus-

tering of single units and separation of principal neurons from

interneurons have been described in detail previously (Supple-

mental Information). Neurons that did not meet the strict criteria

for clean clusters and recording stability (Schmitzer-Torbert

et al., 2005) were discarded. Sessions without full WAKE-SLEEP

cycles (Supplemental Information) were also discarded. This re-

sulted in 995 putative pyramidal cells (pE; mean of 36.9 cells/

session; range of 10–104) and 126 putative interneurons (pI;

4.67 cells/session; range of 0–13). Statistics were carried out

on a per-cell basis and only on putative pyramidal neurons, un-

less otherwise specified.

Neuronal firing varied according to brain state. Across all

states, the distribution of per-cell mean firing rates for putative

pyramidal neurons was strongly positively skewed, with a log-

normal tail toward higher frequencies and a supra-log-normal

tail toward lower frequencies (Figure S2C), spanning three
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Figure 1. Classification of Brain States
(A) Time-power analysis of cortical local field potentials (LFPs). Time-resolved fast Fourier transform-based power spectrum of the LFP recorded from one site of

a 64-site silicon probe in layer 5 of the orbitofrontal cortex. Epochs generated by manually approved automatic brain state segregation are shown above the

spectrum.

(B)Metrics extracted for state classification. The first principal component (PC1) of the LFP spectrogram segregated nonREMpackets from ‘‘other’’ epochs. Non-

nonREM epochs with high theta power and low electromyogram (EMG) activity were designated as REM. Remaining epochs were termed either asWAKE (>40 s)

or microarousal (MA; <40 s; see Figure S1D and Results). Alternating epochs of nonREM packets and MAs comprise nonREM episodes. Integrated power in the

delta (0.5–4 Hz), sigma (9–25 Hz) and gamma (40–100 Hz) bands over time is also shown.

(C) State separation. Left: bimodal distributions and threshold values (red vertical lines) of PC1, theta power, and EMG, respectively. These were used for state

segregation in the example session in (A). Right: three-dimensional plot showing the automatic state segregation. Each point corresponds to 1 s of recording time,

with color indicating the identified state during that second as labeled.

(D) Example state transition. Top two panels show time-resolved wavelet power spectrum and corresponding raw LFP across a nonREM-REM state transition.

Concurrent spikes of putative interneurons (purple dots) and pyramidal cells (green) are shown. Below: summed spikes of all pyramidal cells. Note corre-

spondence between silent periods of spike rasters (DOWN state) and large positive waves in the LFP. This change between intermittent activity and persistent

activity differentiates nonREM from REM in the cortex and is also represented in PC1 of the LFP spectrogram.

(E) Characterization of UP states within nonREM. See Supplemental Experimental Procedures for details of identification algorithm. Top: average wavelet

spectrum of LFP from UP states normalized in time for comparison (0 to 1). Middle: mean firing rates of the putative pyramidal cells and interneurons during

normalized and averaged UP states from all sessions and all rats. Bottom: population synchrony of pyramidal cells (fraction of spiking neurons in 50 ms bins) and

the ratio of the fraction of pyramidal cells and combined fraction of pyramidal cells and interneurons in 50ms bins (E/E+I ratio) during normalizedUP states from all

sessions and all rats.
orders of magnitude range from 0.05 Hz to 5 Hz (Figure 2A). Me-

dian rates (± SD) of putative pyramidal cells in each state were as

follows: WAKE, 0.76 ± 1.53 Hz; nonREM, 0.69 ± 0.86 Hz;

REM, 0.88 ± 1.33 Hz; and for putative interneurons were as fol-

lows: WAKE, 5.59 ± 7.25 Hz; nonREM, 4.69 ± 5.62 Hz; REM,
4.25 ± 9.43 Hz. Whereas nonREM and WAKE firing rates re-

mained highly correlated on a per-cell basis (R = 0.82, p <

1�10), the slope of this relationship significantly deviated from 1

(Figure 2B), demonstrating that state transitions exert a differen-

tial effect across the firing rate spectrum (slope, 95% confidence
Neuron 90, 839–852, May 18, 2016 841



10 0
Wake firing rate (Hz)

10
-2

10
0

no
nR

E
M

 fi
rin

g 
ra

te
 (H

z)

WAKE
nonREM
REM

0.001 0.01 0.1 1 10
Spike rate (Hz)

0

250

500

750

1000

C
um

ul
at

iv
e 

un
it 

co
un

t

S
pi

ke
 ra

te
 (H

z)

10-2 10 -1 10 1

10
-1

10
1

Fastest
spiking 
sextile

A CB

ED F

Slowest
spiking 
sextile

100 101 102 103

1

2

3

4

5

6

7

Milliseconds from prior spike

8

1st half of sleep

U
ni

t n
um

be
r

2nd half of sleep

S
ec

on
d 

ha
lf 

sl
ee

p:
 m

ea
n 

U
P 

st
at

e 
fir

st
 s

pi
ke

 (s
ec

)

0.1 0.2
First half sleep: mean
UP state first spike (sec)

0

0.1

0.2

3e-3 0.3 0.03  3.1  
Spike rate (Hz)

0 0.6

t (s)

0.30 0.6

t (s)

100

300

500

700

900

0.3

0.035-0.005 0.015
Pairwise correlation

Rate groups

R
at

e 
gr

ou
ps

1 2 3 4 5 6

1

2

3

4

5

6

Theta

Low FR High FR

UP state first spike occurrence rate (Hz)
0 52.5

Lo
w

 F
R

H
ig

h 
F

R
Figure 2. Cortical Neuronal Firing Patterns in Different States

(A) State-wise differences of average firing rate. Cumulative distribution of the firing rates of individual putative pyramidal neurons (log scale). Note brain-state-

dependent differences (color). Vertical lines separate equal number of neurons into six subgroups (sextiles) based on WAKE firing rate—used in later analyses.

(B) Differential effect of brain state on neurons of different firing rates. Comparison of the firing rates (log scale) of the same pyramidal neurons during WAKE and

nonREM—each point is the same neuron in two states. During nonREM, neurons at the right end of the distribution are decreased, but neurons at the left end of

the distribution increase their rates compared to WAKE (arrows).

(C) Temporal relationships of spikes across brain states. Average single-cell spike autocorrelogram shows largest peak at 8 ms during nonREM and small peaks

at 125 ms (�8 Hz theta frequency) during REM and WAKE (arrow) and a fast decay of spiking, especially in nonREM.

(D) Spike timing in UP states is consistent. Cell-wise histograms of time-resolved likelihood distribution of the first spike time fired by each pyramidal neuron

across all DOWN-UP state transition (set to 0 ms) shown separately for the first and second halves of SLEEP episodes. Color represents the normalized firing

likelihood for that unit. Each unit is a horizontal color line, vertically sorted identically in both columns by the mean onset time during the first half of SLEEP.

(E) UP state spike timing correlates with cell firing rate. Comparison of the mean latency to the first spike of each neuron during the first and second halves of the

recording session (same data as D). Note that faster-firing neurons tend to fire at shorter latencies.

(F) Firing rate predicts cofiring. Mean pairwise correlation of pairs of neurons in nonREM sleep based on 100 ms bins, separated into six firing rate groups based

on mean rate. Note high correlations between high firing rate pairs of cells and negative correlation between slow- and fast-firing neuron pairs. All comparisons,

except 4,4, are significant (see Supplemental Experimental Procedures).
interval 0.66–0.71). The right tail extended toward higher rates

during WAKE and REM compared to nonREM (Figure 2A; frac-

tion of >2 Hz neurons, WAKE = 19.2%, REM= 19.2%, nonREM=

8.8%; chi-square test, all comparisons p < 1�10).

In addition to single spikes, pyramidal neurons also fire spike

bursts (Connors and Gutnick, 1990; Steriade et al., 2001). Here

we defined the burst index as the fraction of spikes with inter-

spike intervals <15 ms. Burst index was highest during nonREM

(median in nonREM = 11.8%) and lowest during WAKE (4.0%),

with REM (5.5%) slightly higher than WAKE (p < 0.05; Kruskal-

Wallis test). State dependence of firing patterns was also evident

in the averaged autocorrelograms of single units: a large peak

occurred at approximately 8 ms interspike interval during

nonREM, whereas smaller peaks were present at �125 ms

(i.e., theta frequency) during REM and WAKE (Figure 2C). These
842 Neuron 90, 839–852, May 18, 2016
data are consistent with intracellular recordings (Steriade et al.,

2001). Time decay of the autocorrelograms of pyramidal neurons

was significantly faster during nonREM compared to WAKE and

REM (Figure 2C; decay fit exponent median, nonREM = �1.35,

WAKE =�0.83, REM =�0.80; p < 0.05; Kruskal-Wallis test). Pu-

tative interneurons tended to sustain similar activity across brain

states (Figures S2C–S2E). Because of their smaller number and

high variability, interneurons were not analyzed in detail.

Population-level firing patterns also varied across brain states.

The fraction of principal cells firing in 50ms overlapping timewin-

dows (population synchrony) showed a skewed distribution.

More than 15% of principal neurons rarely fired synchronously

with others (4% of windows), while less than 4.2% discharged

synchronously in at least half of the windows. Furthermore,

analyzing synchrony among populations in different states



(Figure S2F) revealed brain-state-dependent differences in the

distribution of synchrony over timewindows. NonREMwas char-

acterized by a large fraction of time windows with all neurons

silent, corresponding to DOWN states alternating with nonsilent

UP states. The durations of DOWN states of slow oscillations

showed a skewed distribution (median = 0.19 s) and so did the

UP states (median = 0.47 s; Figure S4A). UP states were charac-

terized by an initial surge of gamma power, followed by

increased sigma power (Figure 1E), corresponding to UP-

state-related sleep spindles. Firing rates of both pyramidal cells

and interneurons decreased over the time course of theUP state,

accompanied by a decreasing gain of excitation (excitatory-

inhibitory [E-I] ratio) and decreasing population synchrony of

pyramidal neurons (Figure 1E).

In agreement with previous reports (Luczak et al., 2007), pyra-

midal neurons fired in reliable spatiotemporal sequences during

the early part of the UP state (<200 ms), and these stereotypical

sequences remained stable across the entirety of sleep (Fig-

ure 2D). Additionally, the spike onset times of individual neurons

in the sequences were negatively correlated with their firing rates

(Figure 2E) (Peyrache et al., 2010). To explore this relationship

further, we arbitrarily sorted neurons into six firing rate groups

and assessed average pairwise correlations of spiking between

all combinations of these groups within nonREM sleep (Fig-

ure 2F). Seemingly as a result of the ‘‘fast before slow’’ relation-

ship seen in spike timing during UP states (Figure 2E), the

fastest- and slowest-firing neurons tended to be positively corre-

lated within groups but were actually negatively correlated

across groups (Figure 2F).

Firing Pattern and LFP Changes across the Course of
Sleep
We identified 54 WAKE-SLEEP episodes in our dataset, or an

average of 2.0 episodes per neuron recorded (27 sessions),

and analyzed changes on a per-episode basis. In agreement

with previous studies (Grosmark et al., 2012; Vyazovskiy et al.,

2009), we found that the arithmetic mean of the population firing

rates of pyramidal cells declined over the course of sleep using a

test of correlation of spike rate versus time (Figures 3A and 3B;

R = �0.11, p < 10�3). Comparison of the population discharge

rates in the first and last nonREM packets of SLEEP episodes

showed an overall mean rate decrease (1.04 ± 1.20 Hz versus

0.88 ± 0.91 Hz; p < 0.02; Wilcoxon test) (Vyazovskiy et al.,

2009). This effect was ‘‘carried over’’ to subsequent WAKE, as

shown by the significantly decreased discharge rate of pyrami-

dal neurons in a 5min postsleepWAKE compared to a 5min pre-

sleep WAKE epoch (p < 10�6; Wilcoxon test).

By contrast, within-neuron comparisons demonstrated that

sleep brings about systematically varying effects across the rate

spectrum: while fast-firing pyramidal neurons decreased rate

over SLEEP, slow-firing neurons increased their rates (Figure 3D).

To quantify this observation, we assessed spike rates of the same

neurons in the first versus the last nonREMpackets of SLEEP and

found the slopeof thiscorrelationsignificantly departed fromunity

(slope, 95% confidence interval 0.827–0.880). This ‘‘tilting’’ of the

slope of fit demonstrates that high firing rate neurons tend to

decrease their firing rates while the low firing rate neurons tend

to elevate their firing rates over sleep. This echoed the differential
firing shiftsobserved in the state transition fromWAKE tononREM

(Figure 2B). To further characterize this differential effect, we

divided pyramidal cells from across the dataset into six sextile

groups based on their WAKE firing rates (Figure 2A). We main-

tained these firing rate groups for all subsequent analyses. Since

the duration of SLEEP varied across rats and sessions, sleep ses-

sion lengths were time normalized for group comparisons (Gros-

mark et al., 2012). Additionally, we only included nonREMperiods

in our analysis to control for state-related rate shifts. The mean

spike discharge rate of highest firing rate sextile groups signifi-

cantly decreased over sleep, whereas the activity of the lowest

firing rate sextile showed amarginal increase (Figure 3B; Pearson

correlations versus normalized time). In agreementwith the differ-

ential rate changes of the sextile groups, the coefficient of firing

rate variation also showed a significantly decreasing slope over

the course of SLEEP (R = �0.05; p < 0.01).

Parallel with the spike rate shifts, multiple other parameters

showed gradual changes over the course of SLEEP (Figure 3C),

analyzed on a per-SLEEP epoch basis, and again confined

to nonREM periods. Incidence of spindles (1.94 ± 0.39/min)

decreased (R = �0. 093; p < 10�5), while spindle duration

(0.52 ± 0.32 s), frequency (13.93 ± 0.93 Hz), and amplitude

(203.3 ± 87.71 mV) did not change over SLEEP. Incidence of

both UP states (R = �0.10; p < 10�6) and DOWN states

(R = �0.08; p < 10�4) decreased significantly, while the duration

of DOWN states increased (Rslope = 0.09; p < 10�4; Figure 3B)

and duration of UP states did not change. In addition, the fraction

of time that could be identified as neither UP nor DOWN

state (other) increased significantly over the course of sleep

(R = 0.08; p < 10�2), implying changes in overall UP-DOWNdrive.

Comparison of firing rates within UP states showed a general

decrease across the whole population (Figure S3C), and sub-

traction of UP state firing activity in early sleep from that in late

sleep revealed that the firing rates of the fastest sextile group

and putative interneurons decreased later in sleep, whereas

firing of the slowest sextile increased (Figure 3F). These results

reveal that UP/DOWN changes themselves are not the sole fac-

tor in determining spike rate changes across sleep, but there are

within-UP-state effects that play a strong role.

Finally, we analyzed how firing rates changed from the first to

the last epoch of MA and REM, to complement our nonREM

analyses. We again found that changes from the first to last

REM episode or the first to last MA demonstrated differential

effects across the rate spectrum, with higher firing rate neurons

decreasing firing rate and low firing rate neurons increasing

toward the end of sleep (Figure S3A).

Together, these findings demonstrate that instead of down-

scaling and eliminating slow-firing neurons (i.e., reducing their

rates to zero) (Tononi and Cirelli, 2014), sleep brings about a

spike rate homogenization effect by upscaling the slow-firing

neurons and decreasing the activity of fast-firing neurons. In

the next set of analyses, we investigated potential mechanisms

responsible for these differential rate changes.

Firing Rate and LFP Changes within NonREM Episodes
and Packets
To better understand the changes occurring across sleep, we

took the approach of analyzing changes within specific sleep
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Figure 3. Firing Pattern Changes over the Course of SLEEP

(A) Example of opposite modulation of firing rate over sleep. Population mean firing rates (black traces), and mean packet firing rate for the fastest- and slowest-

firing sextiles (green circles) of pyramidal neurons in an example session. Only nonREM packets are shown for clarity. High firing rate cells show downregulation

over sleep; low firing rate cells increase firing over sleep.

(B) Firing rate changes across sleep. Top panel: population arithmeticmean firing rate. R, slope of the rate change within time-normalized sleep from all neurons in

all recordings (n = 995 cells; n = 54 sessions; 11 rats). Bottom panel: firing rate changes in each of six groups defined by WAKE firing rate (see Figure 2A), all cells

and all sessions. R and p values for correlations of each mean firing rate versus normalized time are shown in colors corresponding to plot for each sextile.

Measures are per restricted to nonREM; therefore, changes are not due to relative ratios of nonREM to REM/MA. High firing rate neurons show decreasing

activity; low firing rate cells increase activity over sleep.

(C) Slow oscillations and spindles over SLEEP. UP and DOWN state occurrence rates (top) and UP and DOWN state durations (middle) within SLEEP. Bottom:

spindle incidence. UP state duration not significantly correlated with time; all other significances shown, including decreasing UP, DOWN, and spindle occur-

rence rates. All values are restricted to nonREM times to control for state changes over sleep.

(D) Opposite modulation of neurons of different firing rates. Comparison of individual neuron firing rates during the first and last packets of SLEEP. The regression

line is significantly different from unity (slope, 95% confidence interval 0.83–0.88), showing that high and low firing rate neurons are oppositely modulated over

sleep.

(E) Firing rate changes from SLEEP persist into subsequent WAKE. Comparison of sextile-wise firing rates during the 5 min of WAKE before versus the 5 min of

WAKE after SLEEP. Asterisks above bars indicate significance of one-tailed Wilcoxon, *p < 0.005, **p < 0.001,***p < 0.0001. Boxes indicate 25–75 percentile

range; error bars show most extreme values in each distribution.

(F) Within-UP state firing rate changes across SLEEP. Lines correspond to the difference of UP state values of last versus first packets of SLEEP. Putative

inhibitory (pI) and excitatory cells (pE) from the fastest sextile showed a rate decrease, whereas the slowest sextile (right y axis) showed an increase over SLEEP.

We also show time-resolved changes across the span of the average UP state (0 to 1 on abcissa).
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substate epochs. We begin with nonREM sleep, which has been

the point of focus in the sleep homeostasis literature. We classi-

fied nonREM into the more classical nonREM episodes that

occur between WAKE and REM epochs (but which may have

some interruptions by MAs of up to 40 s duration) and nonREM

packets that are the noninterrupted periods of pure nonREM

found within nonREM episodes. Despite their approximately

3-fold difference in timescale, we found that nonREM episodes

and packets were characterized by very similar dynamics as

each moved from start to completion (Figure 4). Our first

analyses involved LFP features of these states. Power-power

correlations of LFP features during nonREM sleep (Figure S1B)

identified three independently varying frequency bands: delta

(0.5–4 Hz), beta or sigma (9–25 Hz), and gamma (40–100 Hz);

subsequent LFP analyses were based on these three indepen-

dent bands.

Over nonREM episodes and packets, delta and sigma band

power steadily increased (Trachsel et al., 1988), whereas gamma

power decreased over episodes, but not packets (Figures 4A

and 4Bi). This latter finding was the only qualitative difference

noted between episodes and packets. Mean delta power within

whole packets (normalized by nonREM delta power) was posi-

tively correlated with packet length (R = 0.31; p < 0.05). Since

spectral analysis only indirectly describes the dynamics of

slow oscillations (Campbell and Feinberg, 1993; Steriade et al.,

1993), we also calculated LFP features of slow oscillations (Fig-

ures 4A and 4Bii). The incidence of both UP states (R = 0.05;

p < 10�3) and DOWN states (R = 0.08; p < 10�10) increased

significantly within packets, whereas the duration of UP states

decreased (R = �0.02; p < 0.01) and DOWN states increased

(R = 0.07; p < 10�10), changing the UP-DOWN balance (UP/

DOWN ratio negative correlation versus time p < 0.05). The

fraction of epochs identified as neither UP nor DOWN (see

Supplemental Information) increased over packets (R = �0.04;

p < 10�3).

The incidence of spindles significantly increased both within

nonREM episodes (Figures 4A and 4Biii; R = 0.08; p < 10�10)

and packets (R = 0.7; p < 10�10). Spindle duration also increased

(nonREM episode increase from 0.61 ± 0.33 s to 0.67 ± 0.30 s;

R = 0.08; p < 10�3; nonREM packet increase from 0.58 ±

0.25 s to 0.67 ± 0.27 s; R = 0.07; p < 10�4), whereas spindle fre-

quency and amplitude remained unchanged. Thus, the changes

within nonREM did not necessarily reflect changes in the same

metrics across SLEEP, implying different mechanisms.

During the final portion of packets, the generally positive cor-

relation between delta and sigma power was replaced by a sud-

den increase of sigma power and concurrent decrease of delta

power (Figures 4A and 4Bi). Furthermore, sigma power was

elevated in late-packet UP states, as shown by the significant

difference of sigma power between DOWN-UP transition-trig-

gered spectrogram in the late versus early parts of nonREM

packets (Figures 4E and S4B; p < 10�5; t test).

Firing rates of pyramidal cells also changed within nonREM

episodes and packets. Firing rates of the fastest-firing sextile

groups decreased, whereas those of the slowest-firing sextile

groups increased within both nonREM episodes and packets

(Figures 4A and 4Biv; R and p values in figure), resulting in a

decreasing coefficient of variation of binned population firing
rates (Figures 4A and 4Bv; Repisode = �0.13, p < 10�10; Rpacket =

�0.12, p < 10�10). An additional metric, the 15 ms spike burst

index of pyramidal neurons, also showed a positive slope

within both nonREM episodes and packets (Figures 4A and

4Bvi; Repisode = 0.09, p < 10�10; Rpacket = 0.08, p < 10�10).

Next, we addressed the relationship between firing rate and

LFP metrics within nonREM packets by assessing how packet-

wise firing rates (normalized per sleep session) correlated with

LFP metrics of those packets. Per-packet firing rate of the top

sextile group was negatively correlated with per-packet LFP

metrics, including whole-packet delta power (Z scored per ses-

sion; Figure 4C; R = �0.28; p < 10�10), DOWN state duration

(R = �0.16; p < 10�4), and DOWN state incidence rate (Z scored

per session; R = �0.29; p < 10�10). A positive correlation was

observed between firing rate of the top sextile group and UP

state duration (R = 0.14; p < 10�3) and gamma power (Figure 4D;

R = 0.44; p < 10�10). Finally, a positive correlation was found be-

tween normalized firing rates per packet in the bottom sextile

group and sigma power in the last 20 s of the packet (R = 0.25;

p < 10�10). Other tested relationship combinations were not sig-

nificant. In summary, only fast-firing neurons were negatively

correlated with DOWN state features and positively correlated

with UP state features on a per-nonREM packet basis. On the

other hand, lowest firing rate neurons were correlated with

packet-end sigma power.

Since nonREM is dominated by UP/DOWN state shifts, we

examined LFP and firing rate changes within UP states them-

selves. Spectral comparison of UP states in first third versus

last third of packets showed increased sigma power in later

UP states (Figure 4E; p < 10�10; Wilcoxon rank-sum test and

per-pixel significance; Figure S4B). Comparison of within-UP-

state activity in the first versus last third of packets showed

a drop in firing rate for the fastest sextile group (p < 10�8;

Wilcoxon rank-sum test), an increase in firing rate of putative

interneurons (p < 10�3), and a small but significant decrease

for the slowest-firing group (p < 0.003; Figures 4B and 4E).

Thus, firing rate changes within nonREM packets were not sim-

ply due to changes of UP state and DOWN state durations or

ratios within packets.

Finally, we analyzed intrastate changes of firing rates within

REM andWAKE states using the same sextiles employed above.

We found that entry intoWAKE corresponded with an increase in

firing rate of the highest two sextile groups and a drop in firing

rate of the lowest two sextile groups (Figure S5A), opposing

the effects seen in SLEEP and nonREM. During REM, all sextile

groups except the fourth showed an increase in firing rate (Fig-

ure S5B), consistent with the distinction between REM and

WAKE, despite superficial similarities.

We find that within-nonREM neurons are regulated in a

manner similarly to within SLEEP. WAKE appears opposite to

SLEEP and nonREM in terms of differential effects on neurons

of different spike rates.

Sleep Substates Induce Differential Lasting Firing Rate
Changes
The above analyses did not reveal which, if any, of these changes

persist beyond each state into subsequent brain states. To test

this, we utilized triplets of the type state An- state B- state
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Figure 4. Comparison of Changes within NonREM Episodes and NonREM Packets

(A and B) Comparisons of metrics across (A) time-normalized nonREM episodes and (B) time-normalized nonREM packets. All R and p values of metrics versus

normalized time are displayed above data.

(i) Time-normalized spectrogram (top) and evolution of delta (1–4 Hz), sigma (9–25 Hz), and gamma (40–100 Hz) power (bottom) within nonREM episodes and

packets.

(ii) Evolution of UP and DOWN state incidence and duration.

(iii) Spindle incidence.

(legend continued on next page)
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An+1.We quantified changes from the n to the n + 1 occurrence of

state A, and we attributed changes to the intervening state B.

We started by testing whether the sextile-wise changes within

SLEEP were carried over to WAKE after the termination of

SLEEP. Comparison of firing rates during 5 min of WAKE imme-

diately before SLEEP versus 5 min of WAKE immediately after

SLEEP showed a significant decrease in firing in the top three

sextile groups and an increase in the lowest sextile group (all

p < 0.05; stars in Figure 3E). We also found an inverse correlation

between baseline firing rate and change in spike rate fromWAKE

before to WAKE after sleep (Figure S3A; slope, 95% confidence

interval 0.801–0.0856).

To examine the lasting impact of nonREM packets, the differ-

ence between sextile group firing rates in MAn+1 and MAn was

compared on either side of individual packets. Firing rates in

the top two firing rate sextiles were significantly reduced by

the intervening nonREM packet (both p < 0.01; Figure 5B,

blue), confirming previous reports that nonREM and WAKE

have opposite effects on firing rates (Grosmark et al., 2012;

Vyazovskiy et al., 2009). Analysis of rate change versus firing

rate for these triplets also showed an inverse correlation be-

tween rate and change (Figure S5C), as did a similar analysis

for REMn- packet- REMn+1 triplets (Figure S5D). Additionally,

we found that sigma power in the last 20 s of nonREM packets

was correlated with a greater increase in the lowest firing rate

sextile group in the MAn versus MAn+1 analysis (Figure 5C;

R = 0.181; p < 0.01).

Next, we assessed differential effects of WAKE versus MA

versus REM by measuring firing rates in successive nonREM

packets (packetn versus packetn+1) straddling each of these

states (Figure 5B). WAKE episodes increased the activity of the

fastest-firing sextile group of pyramidal cells from nonREM

packetn to packetn+1 (Figure 5B, black). Furthermore, WAKE

periods with more movement had a proportionally larger effect

(Figure 5C; R = 0.43; p < 0.05). WAKE also appeared to exert a

rate-decreasing effect on slow-firing neurons, although this ef-

fect was not significant; similarly, a correlation of rate versus

log percent change was also not significant (Figure S5E),

possibly due to the small number of uninterrupted nonREM-

WAKE-nonREM triplets (n = 24).

In contrast to WAKE, MA epochs between packets did not

affect fast-firing neurons but significantly increased the rate of

slow-firing neurons from packetn to packetn+1 (Figure 5B, yel-

low). Again, the differential effect across sextiles was confirmed

by a correlation analysis (Figure S5G). Finally, REM episodes

decreased the spike rates from packetn to packetn+1 in all sextile

groups (Figure 5B, red). Longer REM episodes exerted a propor-
(iv) Firing rate changes in the sextile groups.

(v) Coefficient of variation of within-session population firing rates.

(vi) Incidence of spike bursts (fraction of spikes with <15 ms intervals).

(C) Correlation between packet delta oscillation parameters and within-nonREM p

with slow-wave metrics, with the exception of a positive correlation with UP stat

(D) Sigma and gamma band correlates of firing rate. Gamma power in packets cor

in packets with higher sigma-band power at the end of the packet.

(E) Within-UP state changes across nonREM packets. Top: subtraction of spectr

spindle power at the end of nonREM packet, which is present throughout UP stat

top and bottom sextiles of putative excitatory (pE) units and putative inhibitory (p

whereas the fastest sextile of pyramidal cells decreased their rates.
tionally larger effect on rate changes from packetn to packetn+1
for all sextile groups (Figure 5C; R = �0.22; p < 10�2; t test),

and REM theta power was significantly correlated with the pack-

etn to packetn+1 rate decrease of the slowest sextile group only

(R = �0.15; p < 0.05). Correlational analysis did not reveal differ-

ential effects of REM on neurons across the rate spectrum (Fig-

ure S5F). We also found a more general interaction between

firing rate and delta power changes from packetn to packetn+1
when analyzing, regardless of intervening state. The increase

of spike rate from packetn to packetn+1 in the slowest sextile

group was positively correlated with the delta power change

from packetn to packetn+1 (Figure 5C).

Many of the within-state effects seen in our earlier analyses

carried over to subsequent states. Overall, despite all being

considered arousal-like states, WAKE, MA, and REM exerted

qualitatively and quantitatively different effects on neuronal

spiking. Furthermore, many of the effects observed across

states were correlated with measurable aspects of those states,

substantiating the role of the state itself as a mechanism of spike

rate change. Specifically, WAKE states increased the activity of

the highest rate group, whereas nonREM sleep opposed this ef-

fect. MA, by contrast, preferentially increased the discharge rate

of slow-firing neurons, whereas REM sleep decreased the rate of

all principal cells by approximately the same proportion (Figures

5 and 6).

DISCUSSION

By sampling large numbers of neurons, we show that pyramidal

cells in frontal cortex have a strongly skewed, wide dynamic

range of firing rates and that the various substates of sleep differ-

entially affect neurons at different ends of that firing rate distribu-

tion (Figure 6). Furthermore our simultaneous sampling revealed

that a primary goal of sleep-based regulation is modifying the

instantaneous width of this distribution. During nonREM, activity

of fast-firing neurons decreased, whereas activity of slow-firing

neurons increased. REM sleep reduced firing rates relatively

uniformly across firing rate groups, whereas MAs, interspersed

between nonREM epochs, increased the discharge rates of

slow-firing neurons. Accordingly, the net result of sleep is that

the firing rate variation of the population is decreased. These

experimental findings cannot be accounted for by the current

homeostatic models and provide novel insight into how different

aspects of sleep cooperate in adjusting network excitability to-

ward a central value. Our results support the idea that neurons

at different ends of the firing rate spectrum may have different

roles in network function.
acket firing rate. High firing rate neurons show significant negative correlations

e duration. Low firing rate neurons do not show significant correlations.

relates with higher firing rate in high-rate cells. Low firing rate neurons fire more

ogram of last third of packets from that of first third of packets. Note increased

e duration. Bottom: spike rate changes from first to last thirds of packets of the

I) units. Note that pI units increased their within-UP state firing later in packets,
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Figure 5. Persisting Effects of WAKE, REM Sleep, and MA on Firing Rates

(A) Examples of state triplets involving two iterations of a state spanning an intervening state. Scored states are indicated above time-resolved FFT spectrum of

the LFP for each example. Below spectrograms are shown the PC1 power, EMG power, and theta power metrics used in state scoring.

(B) Persisting rate changes across state triplets. Black, red, and yellow plots show firing rate changes in the sextile groups between nonREMn and nonREMn+1

epochs respectively spanning WAKE, REM, or MA states. Changes from subtraction of average per-cell firing rate in nonREMn from nonREMn+1 are plotted for

each firing rate sextile and are attributed to effects of the intervening state. Asterisks indicate significant change. Also shown are the firing rate changes between

MAn+1 andMAn brought about by intervening nonREM state. Noted are n’s for each class of triplet; error bars represent SEM for all points. While WAKE brings up

spiking of high firing rate cells, nonREM brings down the firing rate of that group. MAs elevate spiking of low firing rate cells, and REM reduces spike rates across

the firing rate spectrum.

(C) Correlates of rate change magnitudes across state triplets. Upper left: degree of movement within WAKE correlates with degree of rate increase in the highest

firing rate sextile group. Upper right: duration of REM correlates with degree of firing rate drop across all cells. Lower left: difference in delta power between

consecutive packets (calculated as within-session normalized delta power), regardless of intervening state, correlates positively with degree of spike rate change

in the lowest firing rate sextile. Same finding not replicated in highest firing rate sextile. Lower right: sigma band power in the last 20 s of a packet between two

MAs correlates with the increase in firing of the lowest firing rate sextile group from one MA to the next.
Modulation over SLEEP
Although we confirmed that the overall firing rate is decreased

during sleep (Vyazovskiy et al., 2009), we show that this effect

is due to the decreased activity of the fastest-spiking minority

of neurons. By contrast, we also found that SLEEP increased

the activity of slow-firing neurons, with an overall result of ho-

mogenization of population rates. Other reports show changes

in the coefficient of variation of the amplitude of miniature excit-

atory postsynaptic currents in vitro, indicating homeostasis can

work similarly on synaptic weights (Thiagarajan et al., 2005).

Homeostatic regulation based on a uniform directionality of

modulation of all network elements has been seen in some

experimental paradigms and could have various mechanisms.

First, global synaptic scaling (Turrigiano et al., 1998) may be

brought about by activity-dependent diffusion of substances

(Rutherford et al., 1998; Stellwagen andMalenka, 2006). Alterna-
848 Neuron 90, 839–852, May 18, 2016
tively, cortical neurons could sense their own firing patterns and

globally adjust synaptic strength (Buzsáki et al., 2002) via intra-

cellular signaling and transcription (Ibata et al., 2008). However,

uniform synaptic scaling may produce instability in recurrent cir-

cuits (Blanco et al., 2015; Buonomano, 2005; Kim and Tsien,

2008; Mitra et al., 2012). Although previous modeling has pre-

dicted a diversity of plasticity effects (Blanco et al., 2015), our ex-

periments represent a rigorous description of the regulation of

neuronal activity spanning the firing rate spectrum in natural

sleep. Our findings demonstrate that neurons with different firing

rates are differentially but cooperatively regulated by the sub-

states of sleep (Figure 6).

NonREM Sleep
During nonREM sleep, we see a spike rate homogenization

similar to the overall sleep effect (Figure 2F). One factor
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(log firing rate)
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nonREM

REM
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nonREM
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Figure 6. Effects of Brain States on Neural

Firing Rates

(A) Idealized distribution of the log firing rates of

cortical neurons, divided into six sextiles to match

our analyses here. Lower: chart of significant per-

sisting changes by state and by firing rate sextile.

Arrow size indicates themagnitude of the observed

significant effects on firing rate of WAKE, nonREM,

REM, and microarousal (MA) states on subsequent

states, based on numbers from Figure 5B. In

addition, the rate changes brought about by SLEEP

relative to WAKE are also shown (bottom), based

on numbers from Figure 3E. Note that the overall

effect of SLEEP is mimicked by the combination of

the contributions of multiple substates of sleep.

(B) Each panel illustrates the impact of one brain

state (color coded) on the idealized distribution of

population firing rates.
contributing to the inverse relationship between high and low

firing rate cells may be the fact that spiking in nonREM is largely

restricted to UP states, and fast-firing neurons tend to fire earlier

and slow-firing neurons tend to fire later in those events (Luczak

et al., 2007; Peyrache et al., 2010). This ‘‘fast before slow’’

pattern during UP states is a potential mechanism for differen-

tially affecting synapses between neurons occupying the left

and right parts of the firing rate distribution. Since fast-firing neu-

rons tend to fire first, they are less likely to undergo potentiation

by spike-timing-dependent plasticity (STDP) (Markram et al.,

1997) than the later-firing slow-firing cells. Furthermore, since

the synaptic strength change by the STDP rule depends strongly

on the firing rate of the postsynaptic neuron, fast-firing neurons

are less able to potentiate than slow-firing cells (Bienenstock

et al., 1982; Lim et al., 2015). By these combined mechanisms,

the UP state can function as a rate ‘‘segregator’’ since it tempo-

rally separates neurons by their spike rates (Luczak et al., 2015).

Neuromodulators may also support the rate-reducing effect

of nonREM on the high-firing neurons. Whereas strong synaptic

excitation during UP states can increase membrane conduc-

tance and lead to selective reduction of synaptic potentiation

without affecting synaptic depression, in vitro b-adrenergic re-

ceptor activation has been shown to reverse this effect (Delgado

et al., 2010). This suggests that the shifting levels of norepineph-

rine and other subcortical neuromodulators that occur across

sleep substates can shift STDP rules from depression to

potentiation.

It should be emphasized that the rate decrease of fast-firing

neurons within nonREM packets is not a simple consequence

of the increased incidence and duration of DOWN states. First,

UP state incidence also increased. Second, slow firing rate neu-

rons showed an opposite change in firing rate. Third, when firing

rates were considered only in UP states, rate decrease of fast-

firing neurons from early to late nonREM packets was still pre-
sent. In contrast, firing rates of putative in-

terneurons during UP states increased

from the early to the late nonREM packets

of sleep (Figure 4E). This latter finding is a

strong argument against the possibility
that the pattern changes of faster-firing putative excitatory neu-

rons were due to any contamination by interneurons, which may

be regulated by different mechanisms (Cohen et al., 2016).

REM Sleep
Despite within-REM firing rate increases, REM had a net persist-

ing effect of down shifting firing rates of all neuron groups, a

reflection of a mechanism involving proportional changes (i.e.,

division or multiplication) (Figure 6). Longer REM episodes ex-

erted proportionally larger downscaling effects. Similar to previ-

ous observations in the hippocampus (Grosmark et al., 2012;

Miyawaki and Diba, 2016), we found that WAKE and REM epi-

sodes exerted opposite effects on firing rates. Furthermore,

whereas many minutes of waking activity are necessary for

inducing lasting changes in firing rates during and after WAKE

(Tononi and Cirelli, 2003, 2014), approximately a minute of

REM had the same magnitude but opposite direction effect.

This is of particular interest since WAKE and REM sleep are

associated with seemingly similar network states. Whereas

WAKE is strongly linked to elevated activity of cholinergic, sero-

toninergic, histaminergic, and noradrenergic neurons, during

REM sleep only the cholinergic tone is high (Rasch and Born,

2013). It thus remains a possibility that serotonin and/or norepi-

nephrine are responsible for producing different directions of

rate changes during WAKE and REM (Delgado et al., 2010). Irre-

spective of mechanism, our findings provide further support for

REM in downscaling excitability in cortical networks (Grosmark

et al., 2012).

MAs and WAKE
MAs selectively increased firing rates of neurons at the low end

of the firing rate distribution (Figure 6). Although MAs do not

have a widely agreed-upon quantitative definition, they have

been noted in numerous previous publications. In rodents, they
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have been referred to as ‘‘low amplitude sleep’’ (Bergmann et al.,

1987) and ‘‘low-amplitude irregular activity’’ (Pickenhain and

Klingberg, 1967), whereas in humans the term MA was adopted

(Halász et al., 1979). It could be argued that MAs are analogous

or identical to the early part of WAKE before the animal displays

overt behavioral features of waking, such as eye opening and

movement, especially given the twitches of antigravity neck

and masseter muscles and moderate increase of theta-band ac-

tivity, compared to slow oscillations. Yet our findings demon-

strate that MA is unique from WAKE. First, MA episodes were

distinct from WAKE in terms of reduced theta/gamma power,

closed eyes, and lack of whole-body movement. Second,

whereas WAKE decreased the activity of slow-firing neurons,

MAs increased it (Figure 6). A more quantitative characterization

of the MA state requires further investigation, given its combina-

tion of clinical attributes (Douglas and Martin, 1996; Stepanski

et al., 1984) and its unique role in cortical neuronal regulation

as demonstrated here.

WAKE increased the firing distribution of pyramidal cells (Fig-

ure 6), with longer active WAKE episodes inducing stronger ef-

fects. Since our experiments were performed during the day,

our experiments did not aim to examine global plasticity changes

brought about by waking activity during the dark portion of the

light cycle. Such comparisons are needed to disentangle the ef-

fects of sleep/waking from circadian effects (Dijk and Czeisler,

1995; Miyawaki and Diba, 2016).

Redistribution of Firing Rates during Sleep
According to the SHY model, neurons and synapses are over-

used after extended waking, and nonREM brings about recuper-

ative changes by downscaling the network (Tononi and Cirelli,

2014; Vyazovskiy and Harris, 2013). Specifically, under this hy-

pothesis neurons and synapses strongly activated duringwaking

experience continue to be active during sleep, but weak synap-

ses and slow-firing neurons are ‘‘down-selected’’ and function-

ally eliminated from network activity. This would allow for survival

of ‘‘fittest’’ connections and neurons at the expense ofweak ones

(Tononi and Cirelli, 2014; Vyazovskiy and Harris, 2013). In

contrast, the homeostatic scaling model (Turrigiano and Nelson,

2004; Turrigiano et al., 1998) assumesauniformsynaptic and rate

adjustment by multiplying or dividing each synaptic strength and

rate by the same factor. Sincemultiplicative scalingpreserves the

relative ratios between synapses and firing rates, it can keep the

relative efficacy of learning-induced local modifications and pre-

serve the selectivity of a neuron to different inputs (Miller, 1996;

Rabinowitch and Segev, 2008; Turrigiano and Nelson, 2004).

In the SHY model, the DOWN state of slow oscillation plays a

central role: ‘‘periods of reduced synaptic input (‘off periods’ or

‘down states’) are necessary’’ for downscaling synapses and

firing rates (Vyazovskiy and Harris, 2013). The DOWN state is

considered to be a corrective or prophylactic process that

‘‘shuts down’’ neurons to prevent metabolic damage from over-

work. However, it is not clear how silencing of the network would

downscale synaptic weights and firing rates. According to the

homeostatic scaling model (Turrigiano and Nelson, 2004), pro-

longed silencing of neurons leads to a rebound elevation of

spiking (Brailowsky et al., 1990). Prolonged network silencing af-

ter cortical deafferentation was suggested to be the cause of
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trauma-induced epileptic excitability (Avramescu and Timofeev,

2008). In contrast to the hypothesized coupling between down-

scaling and slow oscillations (Tononi and Cirelli, 2003; Vyazov-

skiy and Harris, 2013), we found an inverse correlation between

various features of slow oscillations and firing rates of fast-firing

pyramidal neurons, coupledwith a positive correlationwith slow-

firing neurons, resulting in a decreased dispersion of population

firing rates (Figure 6).

The increased activity of slow-firing neurons during sleep is in

disagreement with a core implication of the SHY model, which

implies that sleep should eliminate slow-firing neurons by the

repeated silencing of network activity during slow oscillations

of nonREM (Tononi and Cirelli, 2014; Vyazovskiy and Harris,

2013). Furthermore, MAs of nonREM boosted the activity of

slow-firing neurons, whereas WAKE and REM had the opposite

effect on these cells. An acknowledged caveat is that while SHY

is based largely on synaptic plasticity, our research examined

only firing rate changes. The relationship between synaptic and

firing rate regulations should be addressed in further studies. It

is also worth considering that in our study we only measured

from deep cortical layer neurons in frontal cortical regions of

the rodent, which may not be fully representative neuronal dy-

namics in all cortical regions or in upper layers.

Activity-dependent firing rate regulation observed here during

sleep is reminiscent of the dynamic restructuring of activity

described during sensory deprivation (Margolis et al., 2012).

When all whiskers but one were trimmed, stimulation of the

spared whisker evoked diminished responses in the most active

but enhanced responses in the least active somatosensory

neurons. Activity of fast- and slow-firing neurons was also

differentially affected in hippocampal neurons by sleep (Miya-

waki and Diba, 2016). Overall, these findings suggest that differ-

ential regulation of slow- and fast-firing neurons is a cortex-wide

phenomenon.

Our observations are also different from the prediction of the

homeostatic scaling model (Turrigiano and Nelson, 2004).

Instead of observing the firing rate distribution sliding to the left

during sleep, we observed a decreased coefficient of population

rate variation (Figure 6). Further research is needed to clarify the

mechanisms responsible for the differential rate shifting and ac-

tivity-centralizing homeostatic effects of sleep.

Overall, our findings imply that the variousmembers of the log-

normal firing rate distribution are affected by different mecha-

nisms and that a rate-centralizing effect of sleep results from

the parallel rate increase of slow-firing and decrease of fast-firing

subpopulations. Redistribution of activity may be a mechanism

by which learning-induced (cf. Rasch and Born, 2013) and ho-

meostatic plastic processes can be balanced. We hypothesize

that homeostatic downscaling affects mainly the minority high-

firing neurons to provide network stability, whereas ‘‘silent’’

and slow-firing neurons comprise a large pool of reserve for

learning, development, and regeneration-induced specific plas-

ticity (Buzsáki andMizuseki, 2014; Grosmark and Buzsáki, 2016;

Margolis et al., 2012; Panas et al., 2015; Shoham et al., 2006).

Conclusions
We found that sleep does not simply decrease the overall firing

rates of the population. Instead, multiple substates of sleep



exerted differential effects on neurons across the firing rate dis-

tribution during the cyclic course of sleep. In addition to the

critical roles of nonREM and REM, our observations also point

to the importance of MAs in sleep homeostasis to reduce firing

rate dispersion. These global sleep processes might sustain a

wide dynamic range of firing rates, both securing network stabil-

ity via a sparse network of highly active neurons, and accommo-

dating learning-induced changes via the flexible, slow-firing,

plastic, neuronal majority.

EXPERIMENTAL PROCEDURES

Eleven male Long Evans rats, age 3–7 months, were implanted with 64-site sil-

icon probes to record LFP and unit firing in the deep layers of frontal cortical

areas (Vandecasteele et al., 2012). All recordings were carried out in the

home cage of the animal during daytime hours. All protocols were approved

by the Institutional Animal Care and Use Committee of New York University

and Weill Cornell Medical College.

After separation of LFP and spike data, spikes were clustered into single

units (Rossant et al., 2016) and separated into putative pyramidal cells and pu-

tative interneurons (Supplemental Experimental Procedures). Sleep scoring

was performed by an automated algorithm and supervised manually, using

LFP derivatives and EMG signals to segregate WAKE, nonREM, REM, and

MA brain states. During nonREM, UP and DOWN states of slow oscillation

were detected using spike and LFP criteria (Vyazovskiy et al., 2009), and sleep

spindles after filtering and integration.

Putative single pyramidal neurons were divided into six subgroups (sextiles)

based on their overall WAKE firing rates, and these same groups were applied

across all analyses to ameliorate the possibility of ‘‘regression to the mean’’ ef-

fect (rather than regrouping prior to each analyzed epoch). Further details and

discussion of the recordings and data analyses including spiking and LFP an-

alyses are available in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.neuron.2016.03.036.
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Delgado, J.Y., Gómez-González, J.F., andDesai, N.S. (2010). Pyramidal neuron

conductance state gates spike-timing-dependent plasticity. J. Neurosci. 30,

15713–15725.

Dijk, D.J., and Czeisler, C.A. (1995). Contribution of the circadian pacemaker

and the sleep homeostat to sleep propensity, sleep structure, electroenceph-

alographic slow waves, and sleep spindle activity in humans. J. Neurosci. 15,

3526–3538.

Douglas, N.J., and Martin, S.E. (1996). Arousals and the sleep apnea/hypo-

pnea syndrome. Sleep 19 (10, Suppl), S196–S197.

Feinberg, I. (1974). Changes in sleep cycle patterns with age. J. Psychiatr. Res.

10, 283–306.

Frank, M.G., Issa, N.P., and Stryker, M.P. (2001). Sleep enhances plasticity in

the developing visual cortex. Neuron 30, 275–287.

Gervasoni, D., Lin, S.-C., Ribeiro, S., Soares, E.S., Pantoja, J., and Nicolelis,

M.A.L. (2004). Global forebrain dynamics predict rat behavioral states and their

transitions. J. Neurosci. 24, 11137–11147.

Gierz, M., Campbell, S.S., and Gillin, J.C. (1987). Sleep disturbances in various

nonaffective psychiatric disorders. Psychiatr. Clin. North Am. 10, 565–581.
Neuron 90, 839–852, May 18, 2016 851

http://dx.doi.org/10.1016/j.neuron.2016.03.036
http://dx.doi.org/10.1016/j.neuron.2016.03.036
http://crcns.org
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref1
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref1
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref2
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref2
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref2
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref3
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref3
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref4
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref4
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref5
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref5
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref5
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref6
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref6
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref6
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref6
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref7
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref7
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref8
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref8
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref8
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref9
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref9
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref10
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref10
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref11
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref11
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref12
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref12
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref12
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref13
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref13
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref13
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref14
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref14
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref14
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref15
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref15
http://dx.doi.org/10.1016/j.neuron.2016.03.001
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref17
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref17
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref18
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref18
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref18
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref19
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref19
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref19
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref19
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref20
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref20
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref21
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref21
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref22
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref22
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref23
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref23
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref23
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref24
http://refhub.elsevier.com/S0896-6273(16)30056-3/sref24
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